skip to main content


Search for: All records

Creators/Authors contains: "Yang, Jinkyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Abstract

    Topological mechanical metamaterials have been widely explored for their boundary states, which can be robustly isolated or transported in a controlled manner. However, such systems often require pre-configured design or complex active actuation for wave manipulation. Here, we present the possibility of in-situ transfer of topological boundary modes by leveraging the reconfigurability intrinsic in twisted origami lattices. In particular, we employ a dimer Kresling origami system consisting of unit cells with opposite chirality, which couples longitudinal and rotational degrees of freedom in elastic waves. The quasi-static twist imposed on the lattice alters the strain landscape of the lattice, thus significantly affecting the wave dispersion relations and the topology of the underlying bands. This in turn facilitates an efficient topological state transfer from one edge to the other. This simple and practical approach to energy transfer in origami-inspired lattices can thus inspire a new class of efficient energy manipulation devices.

     
    more » « less
  5. null (Ed.)
    Abstract Demonstration of topological boundary modes in elastic systems has attracted a great deal of attention over the past few years due to its unique protection characteristic. Recently, second-order topological insulators have been proposed in manipulating the topologically protected localized states emerging only at corners. Here, we numerically and experimentally study corner states in a two-dimensional phononic crystal, namely a continuous elastic plate with embedded bolts in a hexagonal pattern. We create interfacial corners by adjoining trivial and non-trivial topological configurations. Due to the rich interaction between the bolts and the continuous elastic plate, we find a variety of corner states of and devoid of topological origin. Strikingly, some of the corner states are not only highly-localized but also tunable. Taking advantage of this property, we experimentally demonstrate asymmetric corner localization in a Z-shaped domain wall. This finding could create interest in exploration of tunable corner states for the use of advanced control of wave localization. 
    more » « less
  6. null (Ed.)
    Abstract Coral reef ecosystems support significant biological activities and harbor huge diversity, but they are facing a severe crisis driven by anthropogenic activities and climate change. An important behavioral trait of the coral holobiont is coral motion, which may play an essential role in feeding, competition, reproduction, and thus survival and fitness. Therefore, characterizing coral behavior through motion analysis will aid our understanding of basic biological and physical coral functions. However, tissue motion in the stony scleractinian corals that contribute most to coral reef construction are subtle and may be imperceptible to both the human eye and commonly used imaging techniques. Here we propose and apply a systematic approach to quantify and visualize subtle coral motion across a series of light and dark cycles in the scleractinian coral Montipora capricornis . We use digital image correlation and optical flow techniques to quantify and characterize minute coral motions under different light conditions. In addition, as a visualization tool, motion magnification algorithm magnifies coral motions in different frequencies, which explicitly displays the distinctive dynamic modes of coral movement. Specifically, our assessment of displacement, strain, optical flow, and mode shape quantify coral motion under different light conditions, and they all show that M. capricornis exhibits more active motions at night compared to day. Our approach provides an unprecedented insight into micro-scale coral movement and behavior through macro-scale digital imaging, thus offering a useful empirical toolset for the coral research community. 
    more » « less
  7. null (Ed.)